3.811 \(\int \frac{x^{11}}{\sqrt{a+b x^4}} \, dx\)

Optimal. Leaf size=59 \[ \frac{a^2 \sqrt{a+b x^4}}{2 b^3}+\frac{\left (a+b x^4\right )^{5/2}}{10 b^3}-\frac{a \left (a+b x^4\right )^{3/2}}{3 b^3} \]

[Out]

(a^2*Sqrt[a + b*x^4])/(2*b^3) - (a*(a + b*x^4)^(3/2))/(3*b^3) + (a + b*x^4)^(5/2)/(10*b^3)

________________________________________________________________________________________

Rubi [A]  time = 0.0327336, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {266, 43} \[ \frac{a^2 \sqrt{a+b x^4}}{2 b^3}+\frac{\left (a+b x^4\right )^{5/2}}{10 b^3}-\frac{a \left (a+b x^4\right )^{3/2}}{3 b^3} \]

Antiderivative was successfully verified.

[In]

Int[x^11/Sqrt[a + b*x^4],x]

[Out]

(a^2*Sqrt[a + b*x^4])/(2*b^3) - (a*(a + b*x^4)^(3/2))/(3*b^3) + (a + b*x^4)^(5/2)/(10*b^3)

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{x^{11}}{\sqrt{a+b x^4}} \, dx &=\frac{1}{4} \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{a+b x}} \, dx,x,x^4\right )\\ &=\frac{1}{4} \operatorname{Subst}\left (\int \left (\frac{a^2}{b^2 \sqrt{a+b x}}-\frac{2 a \sqrt{a+b x}}{b^2}+\frac{(a+b x)^{3/2}}{b^2}\right ) \, dx,x,x^4\right )\\ &=\frac{a^2 \sqrt{a+b x^4}}{2 b^3}-\frac{a \left (a+b x^4\right )^{3/2}}{3 b^3}+\frac{\left (a+b x^4\right )^{5/2}}{10 b^3}\\ \end{align*}

Mathematica [A]  time = 0.0195787, size = 39, normalized size = 0.66 \[ \frac{\sqrt{a+b x^4} \left (8 a^2-4 a b x^4+3 b^2 x^8\right )}{30 b^3} \]

Antiderivative was successfully verified.

[In]

Integrate[x^11/Sqrt[a + b*x^4],x]

[Out]

(Sqrt[a + b*x^4]*(8*a^2 - 4*a*b*x^4 + 3*b^2*x^8))/(30*b^3)

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 36, normalized size = 0.6 \begin{align*}{\frac{3\,{b}^{2}{x}^{8}-4\,ab{x}^{4}+8\,{a}^{2}}{30\,{b}^{3}}\sqrt{b{x}^{4}+a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^11/(b*x^4+a)^(1/2),x)

[Out]

1/30*(b*x^4+a)^(1/2)*(3*b^2*x^8-4*a*b*x^4+8*a^2)/b^3

________________________________________________________________________________________

Maxima [A]  time = 0.965617, size = 63, normalized size = 1.07 \begin{align*} \frac{{\left (b x^{4} + a\right )}^{\frac{5}{2}}}{10 \, b^{3}} - \frac{{\left (b x^{4} + a\right )}^{\frac{3}{2}} a}{3 \, b^{3}} + \frac{\sqrt{b x^{4} + a} a^{2}}{2 \, b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(b*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

1/10*(b*x^4 + a)^(5/2)/b^3 - 1/3*(b*x^4 + a)^(3/2)*a/b^3 + 1/2*sqrt(b*x^4 + a)*a^2/b^3

________________________________________________________________________________________

Fricas [A]  time = 1.42202, size = 78, normalized size = 1.32 \begin{align*} \frac{{\left (3 \, b^{2} x^{8} - 4 \, a b x^{4} + 8 \, a^{2}\right )} \sqrt{b x^{4} + a}}{30 \, b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(b*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

1/30*(3*b^2*x^8 - 4*a*b*x^4 + 8*a^2)*sqrt(b*x^4 + a)/b^3

________________________________________________________________________________________

Sympy [A]  time = 3.67733, size = 68, normalized size = 1.15 \begin{align*} \begin{cases} \frac{4 a^{2} \sqrt{a + b x^{4}}}{15 b^{3}} - \frac{2 a x^{4} \sqrt{a + b x^{4}}}{15 b^{2}} + \frac{x^{8} \sqrt{a + b x^{4}}}{10 b} & \text{for}\: b \neq 0 \\\frac{x^{12}}{12 \sqrt{a}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**11/(b*x**4+a)**(1/2),x)

[Out]

Piecewise((4*a**2*sqrt(a + b*x**4)/(15*b**3) - 2*a*x**4*sqrt(a + b*x**4)/(15*b**2) + x**8*sqrt(a + b*x**4)/(10
*b), Ne(b, 0)), (x**12/(12*sqrt(a)), True))

________________________________________________________________________________________

Giac [A]  time = 1.11858, size = 58, normalized size = 0.98 \begin{align*} \frac{3 \,{\left (b x^{4} + a\right )}^{\frac{5}{2}} - 10 \,{\left (b x^{4} + a\right )}^{\frac{3}{2}} a + 15 \, \sqrt{b x^{4} + a} a^{2}}{30 \, b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(b*x^4+a)^(1/2),x, algorithm="giac")

[Out]

1/30*(3*(b*x^4 + a)^(5/2) - 10*(b*x^4 + a)^(3/2)*a + 15*sqrt(b*x^4 + a)*a^2)/b^3